Mutagenic Evaluation of Compound FDA 71-66 Erythorbic Acid

U12

LBI PROJECT #02468

MUTAGENIC EVALUATION OF COMPOUND FDA 71-66 ERYTHORBIC ACID

SUBMITTED TO

FOOD & DRUG ADMINISTRATION
DEPARTMENT OF HEALTH, EDUCATION AND WELFARE
ROCKVILLE, MARYLAND

SUBMITTED BY

LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND

OCTOBER 9, 1974

TABLE OF CONTENTS

		Page No.
Evalua	tion Summary	1
I.	Objective	2
II.	Materials	. 2
III.	Methods	3
IV.	Solubility Properties	. 7
٧.	Toxicity and Dosage Determinations	. 8
VI.	Non-activation Plate Tests	9
VII.	Activation Plate Tests	. 11
VIII.	Non-activation Suspension Tests/Salmonella	. 17
IX.	Activation Suspension Tests/Salmonella	19
Х.	Non-activation Suspension Tests/Saccharomyces	25
XI.	Activation Suspension Tests/Saccharomyces	27
XII.	Summary of Results and Interpretation	33
Append	ix - Summary of Tests Evaluating DMSO for Genetic Activity in Salmonella and Saccharomyces	;

EVALUATION SUMMARY

Compound FDA 71-66, erythorbic acid, was not genetically active either directly or in the presence of metabolic enzymes in any of the $\underline{\text{in } \text{vitro}}$ assays used in this evaluation.

DATE:

October 1, 1974

SPONSOR: Food and Drug Administration, Contract Number 223-74-2104

SUBJECT: Mutagenic Evaluation of Compound FDA 71-66

I. OBJECTIVE

The objective of this study was to assess the genetic activity of the test material in microbial assays with and without the addition of mammalian metabolic enzyme preparations.

II. MATERIALS

A. Test Material

Erythorbic Acid

Hoffman LaRoche #944102

В. Tissue Homogenates and Supernatants

The tissue homogenates and 9,000 x g supernatants were prepared from liver, lung and testes of the following mammalian species: Mouse - ICR random bred adult males; rat - Sprague-Dawley adult males; and primate - Macaca mulatta adult males.

C. Indicator Organisms

The indicator organisms used for all tests are described below:

- Saccharomyces cerevisiae, strain D4: α ade 2-2 a, ade 2-1, try 5-27
- Salmonella typhimurium, strains:

```
TA-1535; hisG, uvrB, rfa (missense mutation)
TA-1537; hisC, uvrB, rfa ( - frameshift mutation) TA-1538; hisD, uvrB, rfa ( + frameshift mutation)
```

D. Reaction Mixture

The following reaction mixture was employed in the activation tests:

•	Component	Final Concentration/nl
1.	TPN (sodium salt)	6 սM
2.	Isocitric acid	49 µM
3.	Tris buffer, pH 7.4	28 սМ
4.	MgCl ₂	1.7 uM
5.	Isocitric dehydrogenase	6.3 Units
6.	Tissue homogenate or cell fraction	72 µM

Components 1-4 were combined and frozen as a "core" reaction mixture to which the other components were added just prior to use.

E. <u>Positive Control Compounds</u>

Table 1 lists chemicals for positive controls in the direct and activation assays.

TABLE 1

POSITIVE CONTROLS USED IN DIRECT AND ACTIVATION ASSAYS

ASSAY	<u>CHEMICAL</u> ^a	SOLVENT	PROBABLE MUTAGENIC SPECIFICITY b
Non-activation	Ethylmethane sulfonate	Water or saline	BPS
	2-Nitrosofluorene	Dimethylsulfoxide ^C	FS
	Quinacrine or Quinacrine mustard	Water or saline	FS
Activation	Dimethylnitrosamine	Water or saline	BPS
	2-Acetylaminofluorene	Dimethylsulfoxide ^C	FS

^a Concentrations given in the Results Section.

III. METHODS

A. <u>Toxicity</u>

The solubility, toxicity and doses for all chemicals were determined prior to screening.

Each chemical was tested for survival against strains TA-1537 and D4 over a range of doses to determine the 50% survival dose. Bacteria were tested in phosphate buffer, pH 7.4, for one hour at 37°C on a shaker. Yeasts were tested in phosphate buffer, pH 7.4, for four hours at 30°C on a shaker. The 50% survival dose was determined from the survival curve and the 1/4 and 1/2 50% doses calculated.

b BPS = base-pair substitution; FS = frameshift.

Previously shown to be non-mutagenic, see Appendix.

If no toxicity was obtained for a chemical with a given strain, then a maximum dose of 5% (w/v) was used against the strain.

Unless otherwise specified, the doses calculated for the tests in buffer were applied to the activation tests. The solubility of the test chemical under treatment conditions is stated in the Results Section.

B. Plate Tests

Only three bacteria strains were tested in qualitative plate tests. In the non-activation procedure, approximately 109 cells of a log phase culture of the bacterial indicator strains were spread over the surface of a minimal plate, and a measured amount of the test chemical was placed in the center of the test plate. In activation tests, the test chemical was added to the cells, and an aliquot of the mixture was spread on the surface of the test plate. The reaction mixture (0.1 ml) plus tissue extract was then spotted on the surface of the plate. Positive and solvent controls were included. All plates were incubated at 37°C for four days and then scored. Each compound (Test, Positive Control and Solvent Control) was done in duplicate. The results were scored as + or -. Concentrations of the positive control compounds are listed in the Results Section.

C. <u>Suspension Tests</u>

1. Non-activation

Log-phase bacteria and stationary-phase yeast cultures of the indicator organisms were grown in complete broth, washed and resuspended in 0.9% saline to densities of 1 x 10^9 cells/ml and 5 x 10^7 cells/ml, respectively. This constituted the working stock for tests of a group of test chemicals and their respective controls. Tests were conducted in 30 ml plastic tissue culture flasks. Cells plus appropriate volume(s) of the test chemical were added to the flasks to give a final volume of 2 ml. Solvent replaced the test chemical in the negative controls. Treatment was at 30°C for four hours for yeast tests and at 37°C for one hour for bacterial tests. All flasks were shaken during treatment. Following treatment, the flasks were set in ice. Aliquots of cells were removed, diluted in sterile saline (4°C) and plated on the appropriate complete media. Undiluted samples from flasks containing the bacteria were plated on minimal selective medium. Samples from a 10-1 dilution of treated cells were plated on the selected media for enumeration of gene conversion with strain D4. Bacterial plates were scored after incubation for 48 hours at 37°C. The yeast plates were incubated at 30°C for 3-5 days before scoring.

2. Activation

Bacteria and yeast cells were grown and prepared as described in the non-activation tests except that the cell densities were increased approximately five-fold for working stock suspensions. Measured amounts of the test and

control chemicals plus 0.25 ml of the stock cell suspension were added to a 30 ml plastic tissue homogenate. All flasks (bacteria and yeast) were incubated at 37°C with shaking. The treatment times as well as the dilutions, plating procedures and scoring of the plates were the same as described for non-activation tests.

D. Preparation of Tissue Homogenates and 9,000 x g Cell Fractions

1. Mice

Male mice (sufficient to provide the necessary quantities of organs for testes, lung and liver homogenates) were killed by cranial blow, decapitated and bled. The three organs were immediately dissected from the animal using aseptic techniques and placed in ice-cold 0.25 M sucrose buffered with Tris at pH of 7.4. Upon collection of the desired quantity of organs, they were washed twice with fresh buffered sucrose and completely homogenized with a motor-driven homogenizing unit at 4°C. The whole organ homogenate obtained from this step was divided into two samples. One sample was frozen at -80°C and the other was centrifuged for 20 minutes at 9,000 x g in a refrigerated centrifuge. The supernatant from the centrifuged sample was retained and frozen at -80°C. These two frozen samples were used for the activation studies.

2. Rats

The same procedures as described for mice was used for this mammal.

3. Primates

The liver, lungs and testes were aseptically removed from freshly killed adult male rhesus (M. mulatta) monkeys. Each organ was cut into a number of pieces each sufficient for one week's studies. The tissues were labeled and frozen at -80°C until needed. Tissue homogenates and 9,000 x g supernatants were prepared as described for mice.

E. Data Recording and Reporting

Following the specified incubation periods all population plates were scored by an automatic colony counter and the results from each plate of a set was recorded, in ink, in bound data books. Information necessary for identification of the specific experiment as well as the presence of any contaminant microorganisms was recorded with each set of plate counts. All minimal or other types of selective media plates were hand scored and the results recorded along with the respective population data. For bacteria strains the number of colonies recorded from either the population or selective plates represents that number in 1 ml of test suspension plated. The numbers recorded for the yeast strain D4 represent the number in 0.5 ml of test suspension plated.

Frequencies were mechanically calculated and double checked. All data presented in the Results Section of this report consists of the actual sum of all raw data plate counts and only the frequencies are calculated figures.

IV. SOLUBILITY PROPERTIES OF THE TEST COMPOUND

- NAME OR DESCRIPTION OF TEST COMPOUND: FDA 71-66
 ERYTHORBIC ACID
- 2. TEST SOLVENT AND DESCRIPTION OF SOLUBILITY OF THE TEST CHEMICAL UNDERTREATMENT CONDITIONS: 0.067 M phosphate buffer, pH 7.4, was used as the solvent for this compound, and the compound was soluble under treatment conditions in all tests.
- 3. OTHER COMMENTS:

		D4	TA-1537
	Dose No.	% Concentration	% Concentration
Range of concentrations of	1	1	1
the test compound used to	2	2	2
determine the 50% survival	3	3	3
level	4	4	4
	5	5	5
	Dose No.	% Survival	% Survival
Survival Results	Control	100	100
-	. 1 .	100	49
Test Date: <u>7-8-74</u>	2	100	10
	3	100	-
	4	97 •	_
	5	80	-
	Dose	% Concentration	% Concentration
Concentrations of the test	Plate Test	_	0.50%
chemical required for	¼ 50% Survival	2.0%	0.25%
mutagenicity tests	½ 50% Survival	4.0%	0.50%
	Other 50%	8.0%	_

VI. NON-ACTIVATION PLATE TESTS

				DATE	: 8-30-	74	
		:	TA-1535	TA-	1537_	TA-	1538
Test	Compound	Concentration/plate	T-1 T-2	T-1	T-2	T-1	T-2
PC	EMS	0.05 ml undi- luted chemical	+ +				
	QM	0.25 mg		+	+		
·.	NF	0.25 mg				+	+
SC	SALINE	·		-	-		
,	DMS0	<10%				_	_

= positive control
= solvent control NOTE: PC

T-1 = trial 1
T-2 = trial 2
EMS = ethyl methanesulfonate

= quinacrine mustard = nitrosofluorene DMSO = dimethyl sulfoxide

(c) = contamination present

DATE: 8-30-74

			TA-1535				TA-	1537	TA-1538		
Test	Compound	Concentration	T-1	T-2	T-1	T-2	T-1	T-2			
TC	FDA 71-66	0.50%	_	_	_	-	_	_			

NOTE:

TC = test compound T-1 = trial 1 T-2 = trial 2

ВЮ
ZEJ

SPECIES	s: Mouse				DATE: 8-30	-74
				TA-1535_	TA-1537	TA-1538
Test	Qrgan	Compound	Concentration/plate	T~1 T÷2	T-1 T-2	T-1 T-2
PC	Li	DMNA	25 μmoles			
		AAF	1.25 mg		+ + +	+ +
٠.	Lu	DMNA	25 µmoles	+/- +/-		
		AAF	1.25 mg			
	.T	DMNA	25 μmoles			
		AAF	1.25 mg		- -	
SC	<u> </u>	DMNA	25 μmoles			
	-	AAF	1.25 mg		- -	
	-	Saline	<u>-</u>			
		DMSO	⊲10%			

NOTE:

PC = positive control
SC = solvent and chemical controls
AAF = 2-acetylaminofluorene
DMNA = dimethylnitrosamine

= liver . Li

= lung ·Lu

= testes

T-1 = trial 1

T-2 = trial 2 DMSO = dimethyl sulfoxide (c) = contamination present

. , Project No. <u>02468</u>

SPECIES: MOUSE						DATE: 8-30-74					
Test	•			TA-1	535	_TA-1	537	T/	TA-1538		
	Organ	Compound Co	Concentration	T-1	T-2	T-1	T-2	T-	·1 T-2		
TC	Li	FDA 71-66	0.50%	_	-	-	_	-	- -		
	Lu .	FDA 71-66	0.50%	-	-	_	-	-	- -		
	T	FDA 71-66	0.50%	-	_	-	_	_	- -		

NOTE:

TC = test compound
Li = liver
Lu = lung
T = testes
T-l = trial l
T-2 = trial 2

Project No. <u>02468</u>

BION	
ETI	
CS	

SPECIES:	RAT					DATE	: 8-3	0-74	
				TA-15	35_	TA-1	537	TA-1	538
Test	Organ	Compound	Concentration/plate	T-1	T-2	T-1	T-2	T-1	T-2
PC	Li	DMNA	25 μmoles	+	+				
		AAF	1.25 mg			+	+	+	+
	Lu	DMNA	25 μmoles	-	-				
		AAF	1.25 mg			•	-	-	-
	Т	DMNA	25 μmoles	-	-				
		AAF	1.25 mg			-	-	-	-
SC	-	DMNA	25 μmoles	-	-				
	•	AAF	1.25 mg	A second		-	-	-	-
	-	Saline	-	-	-		_		أفاد مدري
	-	DMSO	<10%			-	-	-	

NOTE:

= positive control
= solvent and chemical controls

AAF = 2-acetylaminofluorene DMNA = dimethylnitrosamine

= liver

= lung Lu

= testes

T-1 = trial 1

T-2 = trial 2 DMSO = dimethyl sulfoxide (c) = contamination present

SPECIES: RAT						····	DATE: 8-30-74					
				TA-1535		. <u>-</u>	TA-1	<u>537</u>		TA-1	538	
Test	Organ	Compound	Concentration	T-1	T-2		T-1	T-2		T-1	T-2	
TC	Li	FDA 71-66	0.50%		-		-	-		_	_	
•	Lu	FDA 71-66	0.50%	_	-		-	-		-	-	
	Т	FDA 71-66	0.50%	_	1		-	-		_	-	

NOTE:

TC = test compound
Li = liver
Lu = lung
T = testes
T-l = trial l
T-2 = trial 2

E T T T T T T	D
0	<u> </u>

SPECIES:	MONKEY					DATE	8-30)-74	
				TA-1	535	TA-15	537	TA-1	538
Test	Organ	Compound C	Concentration/plate	T-1	T-2	T-1	T-2	T-1	T-2
PC	Li	DMNA	25 μmoles	+	+				
		AAF	1.25 mg			+	+	+	+
	Lu	DMN A	25 μmoles	+/-	+/-				
		AAF	1.25 mg			-	-	_	-
	T	DMNA	25 μmoles	_	-			*	
		AAF	1.25 mg			-	-	_	-
SC	-	DMNA	25 umoles	-	-				
	-	AAF	1.25 mg			_	-	-	-
	-	Saline	-	_	-				
	••	DMSO	<10%				_	-	-

NOTE:

PC = positive control
SC = solvent and chemical controls
AAF = 2-acetylaminofluorene
DMNA = dimethylnitrosamine

= liver = lung Lu

= testes

T-l = trial l

T-2 = trial 2 DMSO = dimethyl sulfoxide

(c) = contamination present

SPECIE	S: MONKE	EY		DATE: 8-30-74							
Test	Organ	Compound	Concentration	TA-1	1535 T-2	· -	TA-1	537 T-2		TA-1	538 T-2
TC							<u> </u>				T-2
TC .	Li ———— Lu	FDA 71-66 FDA 71-66	0.50%				-	-		-	-
	T	FDA 71-66	0.50%	_	_		_	-		_	_

NOTE:

TC = test compound
Li = liver
Lu = lung
T = testes
T-l = trial l
T-2 = trial 2

VIII. NON-ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

8-16-74 DATE:

Test	Indicator Strain	Compound	Concentration	Total Cells/ mlx10 ⁸	his+ Revertants/ ml	his+ Revertants/10 ⁸ Survivors
PC	TA-1535	EMS	0.05 %	10.31	2,628	254.90
	TA-1537	QM	0.01 mg/ml	2.79	59	21.15
	TA-1538	NF	1.25 mg/ml	2.66	43	16.17
sc	TA-1535	SALINE	-	8.75	9	1.03
	TA-1537	SALINE	-	3.70	12	3.24
-	TA-1538	DMS0	-	5.17	. 9	1.74

NOTE:

PC = positive control
SC = solvent control
EMS = ethyl methanesulfonate
QM = quinacrine mustard
NF = nitrosofluorene
DMSO = dimthyl sulfoxide

NON-ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

DATE: 8-16-74

Test	Indicator Strain	Compound	Concentration	Total Cells/ Revenue Mixl0 ⁸	nis+ ertants/ ml	his+ Revertants/10 ⁸ Survivors
тс-н	TA-1535	FDA 71-66	0.50%	7.00 (80)	7	1.00
TC-L	TA-1535	FDA 71-66	Q.25%	9,93 (113)	11	1.11
TC-H	TA-1537	FDA 71-66	0.50%	2.38 (64)	10	4.20
TC-L	TA-1537	FDA 71-66	0.25%	3.97 (107)	11	2.77
					,	
С-Н	TA-1538	FDA 71-66	0.50%	0.29 (6)	2	6.90
TC-L	TA-1538	FDA 71-66	0.25%	0.33(c)(6)	7	21.21
•				•		

NOTE: TC-H = test compound high dose
TC-L = test compound low dose
() = percent survival

Project No. <u>02468</u>

NON-ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

DATE: 9-27-74

Test	Indicator Strain	Compound	Concentration	Total Cells/ mlx108	his+ Revertants/ ml	his+ Revertants/10 ⁸ Survivors
PC	TA-1535	EMS	0.05 %	3		
	TA-1537	QM	0.01 mg/ml			
	TA-1538	NF	1.25 mg/ml	5.63	125	22.20
SC	TA-1535	SALINE	-			
	TA-1537	SALINE	-			
	TA-1538	DMSO	-	5.17	36	6.963

NOTE: PC = positive control

SC = solvent control

EMS = ethyl methanesulfonate
QM = quinacrine mustard

QM = quinacrine mustard NF = nitrosofluorene DMSO = dimthyl sulfoxide

(c) = contamination present

NON-ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

DATE: 9-27-74 his+
Revertants/108 Total his+ Indicator Cells/mlx108 Revertants/ Compound Concentration Strain Test ml Survivors Н TC TA-1535 L TC TA-1535 ٠, Н TA-1537 TC L TA-1537 TC Н TC TA-1538 4.72(91) 9.11 43 TC TA-1538 FDA 71-66 0.25%

NOTE: TC = test compound

H = high dose

L = low dose

(c) = contamination present

() = percent survival

Project No. <u>02468</u>

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTRO. RESULTS

SPECI	ES: MOL	<u>ISE</u>			·		
DATE:	7-2	24-74			Strain TA-15	35	
Test	Organ	Compound	Concentration	Total Cells/ mlx)08	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors	
PC	Li	DMNA	100 μmoles/ml	5.71	2,233	391.07	
	<u>Lu</u>	DMNA	100 μmoles/ml	4.99	49	9.82	
·····	Ţ	DMNA	100 μmoles/ml	7.25	5	0.69	
SC	-	DMNA	100 μmoles/ml	10.55	11	1.04	
	-	SALINE	-	5.80	11	1.90	
DATE:	7-25-7	4			Strain TA-15	37	
Test	Organ	Compound	Concentration	Total Cells/ mlx108	<u>his</u> + Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors	
PC	<u>Li</u>	AAF	1.25 mg/ml	2.67	. 45	16.85	
	Lu	AAF	1.25 mg/ml	1.85	17	5.95	
	T	AAF	1.25 mg/ml	2.90	16	5.52	
SC	-	AAF	1.25 mg/ml	2.11	6	2.84	
	-	DMS0	_	1.83	11	6.01	
DATE:	7-26-74	ļ	•	Strain TA-1538			
Test	0rgan	Compound	Concentration	Total Cells/ mlx10	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors	
PC	<u>Li</u>	AAF	1.25 mg/ml	2.36	53	22.46	
	Lu	AAF	1.25 mg/ml	2.40	16	6.67	
	T	AAF	1.25 mg/ml	2.35	10	4.26	
SC	-	AAF	1.25 mg/ml	2.75	13	4.73	
	•	DMSO	_	2.26 (c) 6	2.65	
NOTE:		positive co	ontrol .	1 -	(c) = con	tamination present	

= positive control
= solvent and chemical controls SC

AAF = 2-acetylaminofluorene DMNA = dimethylnitrosamine

Li = liver Lu = lung

T = testes DMSO = dimethyl sulfoxide

Project No. <u>02468</u>

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

SPECIES: MOUSE

		-74		Strain TA-1	535		
Test	O rgan	Compound	Concentration	Total <u>his+</u> Cells/ Revertants/ mlx10 ⁸ ml	his+ Revertants/10 ⁸ Survivors		
TC	Li	FDA 71-66	Н	7.80(134) 3	0.38		
		·FDA 71-66	L	7.30(126) 10 (c)	1.37		
	<u>Lu</u>	FDA 71-66	Н	6.26(108) 4	0.64		
•		FDA 71-66	L	7.13(123) 6	0.84		
	T	FDA 71-66	Н	6.10(105) 7	1.15		
		FDA 71-66	L	5.33(92) 6	1.13		
DATE:	7- 25-	74		Strain TA-1537			
TC	<u>Li</u>	FDA 71-66	Н	1.54 ⁽⁸⁴⁾ 11 (c)	7.15		
		FDA 71-66	L.	4.64(254) 7	1.51		
	<u>Lu</u>	FDA 71-66	Н	1.38(75) 11	7.97		
		FDA 71-66	L .	2.08(114) 9	4.33		
	T	FDA 71-66	Н	2.48(136) 9	3.63		
		FDA 71-66	L	3.13(171) 6	1.92		
DATE:	7-26-	74		Strain TA-1	538		
TC	Li	FDA 71-66	Н	1.19(53) 13	10.92		
•		FDA 71-66	L	1.08(c)(48)11	10.19		
	Lu	FDA 71-66	Н	1.57(69) 7	4.61		
•		FDA 71-66	L	3.50(155) 9	2.57		
	T	FDA 71-66	Н	2.07 ⁽⁹²⁾ 5	2.42		
	·	FDA 71-66	L.	3.63(161) 5 (c)	1.38		

NOTES: H = high dose L = low dose TC = test compound

Li = liver

Lu = lung T = testes (c) = contamination present

() = percent survival

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

DATE:					Strain TA-15:	35		
				Total Cells/ mlx108	his+ Revertants/	his+ Revertants/10 ⁸		
Test	Organ	Compound	Concentration	mixiu~	ml	Survivors		
PC	Li	DMNA	100 µmoles/ml					
	<u>Lu</u>	DMNA	100 µmoles/ml					
	T	DMNA	100 μmoles/ml					
SC		DMNA	100 μmoles/ml					
	-	SALINE	_					
DATE:					Strain TA-15	37		
Test	Organ	Compound	Concentration	Total Cells/ mlx108	<u>his+</u> Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors		
PC	Li	AAF	1.25 mg/ml					
	Lu	AAF	1.25 mg/ml					
	T	AAF	1.25 mg/ml					
SC	-	AAF	1.25 mg/ml					
	_	DMS0	-					
DATE:	9-27	-74 (Rep	eated Doses)	Strain TA-1538				
Test	Organ	Compound	Concentration	Total Cells/ mlx108	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors		
PC	Li	AAF	1.25 mg/ml	3.18	137	43.08		
	Lu	AAF	1.25 mg/ml	3.04	33	10.86		
	T	AAF	1.25 mg/ml					
SC		AAF	1.25 mg/ml	5.07	40	7.89		
		DMSO	460	4.72	40	8.47		
NOTE:	SC = AAF = DMNA =		d chemical contro inofluorene	ols	(c) = contami	nation present		

BIONETICS

DMSO = dimethyl sulfoxide

Li = liver

= lung = testes

Lu

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

					Strai	n TA-15	35
DATE: Test	Organ	Compound	Concentration	Total Cells/ mlx108	Reve	is+ rtants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors
TC	<u>Li</u>		Н				
10	L_1		· L				
	Lu		Н				
			L	٠			
	T		Н		· 		
			L				507
DATE:					Stra	ain TA-1	537
TC _	Li		Н				
			L				
	Lu		Н				
			L				
	T		Н				
			L		<u> </u>	ain TA-	1520
DATE:	9-27	7-74 (Repea	ted Doses)			ain in-	<u> </u>
TC	Li	FDA 71-66	Н	2.36		33	13.98
		FDA 71-66	L	2.73	(58)	24	8.79
·	Lu		Н				
			L				
	T		Н				
		-	L				

NOTES: H = high dose

L = low dose

TC = test. compound

Li = liver lung

(c) = contamination present
() = percent contamination

percent survival

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

SPECIE	S: RA	T						
DATE:	8-	7-74			Strain TA-15	35		
Test	Organ	Compound	Concentration	Total Cells/ mlx10 ⁸	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors		
PC	Li	DMNA	100 μmoles/ml	6.54	4,269	652.75		
	Lu	DMNA	100 μmoles/ml	6.46	12	18.46		
	Т	DMNA	100 µmoles/ml	9.37	3	0.32		
SC	<u>.</u> .	DMNA	100 µmoles/ml	5 .74	11	1.92		
	·-	SALINE	-	4.17	8.	1.92		
DATE:	8-8-74				Strain TA-15	37		
Test	Organ	Compound	Concentration	Total Cells/ mlx108	<u>his+</u> Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors		
PC	Li	AAF	1.25 mg/ml	1.25	- 38	30.40		
	Lu	AAF	1.25 mg/ml	6.50	33	5.08		
	Ţ	AAF	1.25 mg/ml	4.53	18	3.97		
SC	•	AAF	1.25 mg/ml	5.62	6	1.07		
	•	DMS0	<u>-</u>	5.88	9	1.53		
DATÉ:	8-9	9-74			Strain TA-1538			
Test	Organ	Compound	Concentration	Total Cells/ mlxl0 ⁸	<u>his</u> + Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors		
PC	Li	AAF	1.25 mg/ml	2.84	165	58.01		
	Lu	AAF	1.25 mg/ml	3.95	20	5.06		
	T	AAF	1.25 mg/ml	5.09	26	5.11		
SC		AAF	1.25 mg/ml	3.88	10	2.58		
	-	DMSO	_	4.21	8	1.90		
NOTE:	PC =	positive co	ontrol	1.	(c) = conta	mination present		

NOTE: PC = positive control
SC = solvent and chamical controls

AAF = 2-acetylaminofluorene DMNA = dimethylnitrosamine

Li = liver Lu = lung

T = testes DMSO = dimethyl sulfoxide

Project No. <u>02468</u>

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

SPECIES: RAT

DATE:	8-7-7	4		Strain TA-	535			
Test	Organ	Compound	Concentration	Total <u>his+</u> Cells/ Revertants/ mlx10 ⁸ ml	his+ Revertants/10 ⁸ Survivors			
TC	<u>Li</u>	FDA 71-66	Н	1.70(41) 7	4.12			
		FDA 71-66	L	3.36(81) ₂₀	5.95			
	<u>Lu</u>	FDA 71-66	Н	1.84 (44) 9	4.89			
*		FDA 71-66	L	2.48(59) 13	5.24			
	<u>T</u>	FDA 71-66	Н	2.36 (57) 12	5.08			
,		FDA 71-66	L	4.21 (101) 11	2.61			
DATE:	8-8-7	74		Strain TA-1537				
TC	Li	FDA 71-66	Н	1.96(33) 0	-			
		FDA 71-66	L	4.45(76) 27	6.07			
	Lu	FDA 71-66	Н	4.60(78) 4	0.87			
		FDA 71-66	<u> L </u>	3.48 (59) 13	3.74			
	<u>T</u>	FDA 71-66	Н	1.67(28) 12	7.19			
	*	FDA 71-66	L	3.17(54) 19	5.99			
DATE:	8-9-7	4		· Strain TA-1	538			
TC	Li	FDA 71-66	Н	1.27(30) 19	14.96			
•		FDA 71-66	L	1.92 (46) 6	3.13			
	Lu	FDA 71-66	Н	0 7	-			
•		FDA 71-66	L	2.32 (55) 5	2.10			
	T	FDA 71-66	Н	2.99 ⁽⁷¹⁾ 10	3.34			
		FDA 71-66	L	3.22 ⁽⁷⁶⁾ 20	6.21			

NOTES: H = high dose L = low dose TC = test compound

Li = liver Lu = lung

(c) = testes (c) = contamination present

() = percent survival

Project No. <u>02468</u>

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

ES:	Rat						
	9-16-74	(Repeated Doses)		Strain TA-1535			
Organ	Compound	Concentration	Total Cells/ mlx108	his+	his+ Revertants/10 ⁸ Survivors		
<u>Li</u>	DMNA	100 µmoles/ml	4.19	3,155	752.98		
Lu	DMNA	100 µmoles/ml	2.92	7	2.40		
T	DMNA	100 µmoles/ml	3.60	5	1.39		
	DMNA	100 µmoles/ml	3.43	5	1.46		
-	SALINE	-	3.99		1.25		
9-1	1-74 (Repea	ted Doses)					
Organ	Compound	Concentration	Total Cells/ mlx108	<u>his+</u> Revertants/ ml	his+ Revertants/10 ⁸ Survivors		
<u>Li</u>	AAF	1.25 mg/ml	1.35	100	74.07		
<u>Lu</u>	AAF	1.25 mg/ml					
	AAF	1.25 mg/ml			÷		
	AAF	1.25 mg/ml ·	1.32	5	3.79		
	DMS0	-	1.81	8	4.42		
	······································		Strain TA-1538				
Organ	Compound	Concentration	Total Cells/ mlx10 ⁸	<u>his</u> + Revertants/ ml	<u>his+</u> Revertants/10 ⁸ Survivors		
<u>L1</u>	AAF	1.25 mg/ml					
Lu	AAF	1.25 mg/m1					
<u> </u>	AAF	1.25 mg/ml ·					
-	AAF	1.25 mg/ml					
-	DMSO						
SC = AAF = DMNA = Li = Lu = T	solvent and 2-acetylamindimethylnithiver liver lung testes	chemical controls nofluorene rosamine	,	(c) = contamin	ation present		
	Organ Li Lu T 9-1 Organ Li Lu T Corgan Li Lu T Corgan Li Lu T Li Lu T PC = SC = AAF = DMNA = Li Lu = T	9-16-74 Organ Compound Li DMNA Lu DMNA T DMNA - DMNA - SALINE 9-11-74 (Repea Organ Compound Li AAF Lu AAF T AAF - DMSO Organ Compound L1 AAF Lu AAF - DMSO Organ Compound L1 AAF Lu AAF -	Organ Compound Concentration Li DMNA 100 μmoles/ml Lu DMNA 100 μmoles/ml T DMNA 100 μmoles/ml - DMNA 100 μmoles/ml - SALINE - 9-11-74 (Repeated Doses) Organ Compound Concentration Li AAF 1.25 mg/ml Lu AAF 1.25 mg/ml - AAF 1.25 mg/ml - DMSO Organ Compound Concentration L1 AAF 1.25 mg/ml - AAF 1.25 mg/ml - DMSO Organ Compound Concentration - DMSO Organ Compound Concentration - DMSO - DMSO - DMSO PC = positive control SC = solvent and chemical controls AAF 2-acetylaminofluorene DMNA = 2-acetylaminofluorene DMNA = 1 iver Lu = liver Lu = lung	9-16-74 (Repeated Doses) Total Cells / mlx108	9-16-74 (Repeated Doses) Strain TA-15		

BIONETICS

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

DATE:					Strain TA-1	535
Test	Organ	Compound	Concentration	Total Cells/ mlx10 ⁸	his+ Revertants/ ml	<u>his+</u> Revertarts/10 ⁸ Survivors
TC	Li		Н			
			, <u>L</u>			
	Lu	•	Н			
	•		L	• .		
	T		Н			
*****			L			
DATE:	9-11	1-74 (Repe	ated Doses)		Strain TA-1	537
TC	<u>Li</u>	FDA 71-66	Н	1.48 (82) 7	4.73
			L			
	<u>. Lu</u>		Н			
			L			
	<u> </u>		Н,	 		
······································	······································		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
DATE:				•	Strain TA-1	538
TC	Li		Н			· · · · · · · · · · · · · · · · · · ·
•	•		L.			
	Lu		Н			
· - ,			L			
	<u> </u>		н.			
	· · · · · · · · · · · · · · · · · · ·		L			
NOTES:	TC = tes Li = liv Lu = lur T = tes	w dose it compound ver ng	resent	() = per	cent survîva	a]
				ŗ	rniert No	02468

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

SPECIE	S: RAT							
DATE:				Strain TA-1535				
	_			Total Cells/ mlx10 ³	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors		
Test	Organ	Compound	Concentration	mixio-	1111	201.41.401.2		
PC	<u>Li</u>	DMNA	100 µmoles/ml					
	Lu	DMNA	100 μmoles/ml					
	Ţ	DMNA	100 μmoles/ml					
SC	-	DMNA	100 μmoles/ml					
	-	SALINE	,	,				
DATE:					Strain TA-15	37		
Test	Organ	Compound	Concentration	Total Cells/ mlx108	<u>his+</u> Revertants/ ml	his+ Revertants/10 ⁸ Survivors		
PC	Li	AAF	1.25 mg/ml					
	Lu	AAF	1.25 mg/ml			•		
	T	AAF	1.25 mg/ml					
sC	_	AAF	1.25 mg/ml					
	-	DMS0	-	•				
DATE:	9-27	-74 (Repe	ated Doses)		Strain TA-1538			
Test	Organ	Compound	Concentration	Total Cells/ mlx108	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors		
PC	Li	AAF	1.25 mg/ml	4.49	147	32.74		
	Lu	AAF	1.25 mg/ml	2.99	40	13.38		
	T	AAF	1.25 mg/ml					
SC	-	AAF	1.25 mg/ml	5.07	40	7.89		
	-	DMSO	-	4.72	40	8.47		
NOTE:	SC = AAF = DMNA = Li = Lu = T =	positive c solvent an 2-acetylam dimethylni liver lung testes dimethyl s	d chemical controlinofluorene trosamine	ols		ination present		
	Di-150 -	a this only i			Project	No. <u>02468</u>		

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

SPECIES	S: RAT						
DATE:					Strain TA-1	535 ———————————————————————————————————	
Test	Organ	Compound	; Concentration	Total Cells/ mlx10 ⁸	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors	
TC	Li		· Н				
, 0			· L				
	Lu		Н				
	`		L	•			
	T		Н				
7			L				
DATE:					Strain TA-	1537	
TC	Li		Н				
• •			<u> </u>				
	Lu		Н				
			L				
	T		Н				
			L				
DATE:	9-27	-74 (Repeate	d Doses)	. Strain TA-1538			
TC	Li	FDA 71-66	Н	1.74 (3	37) 37	21.26(c)	
			L				
	Lu	FDA 71-66	Н	3.02 (6	32	10.60	
			<u> </u>				
	T		<u>H</u>				
			<u> </u>				
NOTES	L = 1 TC = t Li = 1 Lu = 1 T = t	igh dose ow dose est compound iver ung estes contamination percent surviv	present val		Project No	o. 02468	

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

SPECIE	S: MON	IKE /				
DATE:	9-5	5-74			Strain TA-153	35
Test	0rgan	Compound	Concentration	Total Cells/ mlx10 ⁸	his+ Revertants/ ml	his+ Revertants/10 ⁸ Survivors
PC	Li	DMNA	100 μmoles/ml	6.49	3,117	480.28
	Lu	DMNA	100 µmoles/ml	6.03	19	3.15
	T	DMNA	100 μmoles/ml	5.63	14	2.49
SC	· _	DMNA	100 µmoles/ml	6.40	23	3.59
	-	SALINE	-	5.11	10	1.96
DATE:	37					
Test	Organ	17-74 Compound	Concentration	Total Cells/ mlx108	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors
PC	Li	AAF	1.25 mg/ml	5.47	84	15.36
	Lu	AAF	1.25 mg/ml	5.64	17	3.01
	T	AAF	1.25 mg/ml	4.57	19	4.16
SC	-	AAF	1.25 mg/ml	5.67	40	7.05
	-	DMSO	-	6.20	44	7.10
DATE:	9-	27-74			Strain TA-15	38
Test	Organ	Compound	Concentration	Total Cells/ mlxl0 ⁸	<u>his</u> + Revertants/ ml	his+ Revertants/10 ⁸ Survivors
PC	Li	AAF	1.25 mg/ml	6.68	305	45.66
	Lu	AAF	1.25 mg/ml	5.09	52	10.22
	T	AAF	1.25 mg/ml	5.15	33	6.41
SC	_	AAF	1.25 mg/ml	5.07	40	7.89
		DMS0		4.72	40	8.47

AAF = 2-acetylaminofluorene DMNA = dimethylnitrosamine

Li = liver = lung

T = testes DMSO = dimethyl sulfoxide

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

SPECIES	MONKEY				
DATE:	9-5-74			Strair	TA-1535
Test	Organ	Compound	Concentration	Total his Cells/ Revers mlx10 ⁸ ml	tants/ Revertants/108
TC	Li	FDA 71-66	. Н	4.49(88) 12	2 2.67
		FDA 71-66	·. L	4.87(95) 20	9.11
	Lu	FDA 71-66	Н	1.85(36)	0.54
		FDA 71-66	L	5.16(101) 12	2 2.33
	T	FDA 71-66	Н	3.08(60)	3 2.80
		FDA 71-66	L	3.58(70)	7 1.96
DATE:	9-17-7	4		Strain	n TA-1537
TC	Li	FDA 71-66	Н	4.97 (80) 34	1 6.84
		FDA 71-66	L	4.66(75) 47	7 10.01
	Lu	FDA 71-66	Н	4.20(68) 2	5.00
		FDA 71-66	L	4.60(74)	9 1.96
	T	FDA 71-66	Н	2.79(45) 13	3 4.66
		FDA 71-66	L	4.41(71) 1	2.49
DATE:	9-27-7	4		Strai	n TA-1538
TC	Li	FDA 71-66	Н	2.41(51) 43	3 17.84
•		FDA 71-66	<u>L</u>	2.44(52) 3	5 14.75
	Lu	FDA 71-66	Н	2.05(43) 3	7 18.05
		FDA 71-66	<u> </u>	4.04(86) 54	13.67
	T	FDA 71-66	Н	4.23(90) 49	9 11.58
		FDA 71-66	L	4.47(95) 34	7.61

NOTES: H = high dose L = low dose

TC = test compound

Li = liver Lu = lung T = testes

(c) = contamination present

() = percent survival

Χ. NON-ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4

DATE: 7-29-74

				Strai	n D4		The second secon
Test	Compound	Concentration	Total Population Screeneda		rtantsb	Convertar 10 ⁵ Surv Ade ⁺	nts Per vivors Try+
PC	EMS	1.0 %	4.71	479	315	101.70	66.88
SC	Saline	-	4.39	117	14	26.65	3.19

TE: PC = positive control
SC = solvent control
EMS = ethyl methanesulfonate
a = number x 10⁵
b = number at 10⁻¹ dilution

NON-ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4

DATE: 7-29-74

,	n delakan sa dih madika diken dibida delakan penangan delakan apada dapi agama		Strain D4					
Test	Compound	Concentration	Total Population Screened ^a	Number Convertants ^b Ade ⁺ Try ⁺	Convertants Per 10 ⁵ Survivors Ade [†] Try [†]			
TC	FDA 71-66	Н	2.37 (54)	94 9	39.66 3.80			
	FDA 71-66	L	3.66 (83)	90 13	24.59 3.55			

IOTE: TC = test compound

H = high dose
L = low dose
a = number x 105
b = number at 10⁻¹ dilution
() = percent survival

ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4: POSITIVE AND SOLVENT CONTROL RESULTS XI.

SPEC	IES: M	OUSE		DATE:	DATE: 7-29-74				
	A CONTRACTOR OF THE CONTRACTOR		a vig ellerge mer en en mer melle melle melle meller per in staat stallende fann e mel flest fan flest tre tr	alad prantigas, ranks rancololisti delektristi (1864), et elektristi (1864) et elektristi (1864) et elektristi	Strain D4				
Test	Organ	Compound	Concentration	Total Population Screened ^a	Conve	er of rtants ^b Try [†]		ants Per rvivors ry ⁺	
PC	l_i	DMNA	150 µmoles/ml	2.90	237	67	81.72	23.10	
	Lu	DANA	150 µmoles/ml	3.23	68	27	21.05	8.36	
	T	DMNA	150 µmoles/ml	3.38	61	11	18.05	3.25	
SC	**	DMNA	150 µmoles/ml	2.89	42	13	14.53	4.50	
	paganganan na Artar Maranda n	SALINE	realization from material visitors and electric realization and electri	2.75	89	6	32.36	2.18	

NOTE: PC

= positive control
= solvent and chemical controls SC

DMNA = dimethylnitrosamine

Li = liver = lung Lu = testes

= number $\times 10^5$ = number at 10^{-1} dilution (c) = contamination present

Project No. 02468

ACTIVATION SUSPENSION TESTS WITH SACCHAROWICES INDICA OF STRAIN D4

SPEC	IES:	MOUSE		DATE:	7-29-7	4		
	anning in any property of the order	Strain D4						
Test Organ		Compound	Concentration	Total Population Screened ^a	Conyer		Converta 10 ⁵ Sur Ade ⁺	
TC	Li	FDA 71-66	5 H	3.62 (132)	79	1.3	21.82	3.59
	The section of the se	FDA 71-60	L	3.56 (129)	101	16(c)	28.37	4.49
	Lu	FDA 71-66	5 H	3.81 (139)	93	18	24.41	4.72
	(c), und , reinstellentenhammen seine ein zum	FDA 71-66	5 L	5.28 (192)	102	14	19.32	2.65
	T	PDA 71-66	5 H	4.43 (161)	99	16	22.35	3.61
		FDA 71-66	5 L	4.93 (179)	82	17	16.63	3.45

NOTE:

TC = test compound

H = high dose

L = low dose

Li = liver

Lu = lung
T = testes
a = number x 10
b = number at 10⁻¹ dilution
(c) = contamination present

() = percent survival

ACTIVATION SUSPENSION TESTS WITH SACCHARCHYCES INDICATOR STRAIN D4: POSITIVE AND SOLVENT CONTROL RESULTS

SPEC	IES: R	AT		DATE:	DATE: 8-5-74				
and the second second second	gar paganggangangan dan di Perdendidi Peles			ng etapologicalista, ni tenné (kunduk al-aka al-aka al-aka al-ak a al-aka al-a	Strain				
Test	Organ	Compound	Concentration	Total Population Screened ^a	Number of Convertants ^b Ade ⁺ Try ⁺		Convertants Per 10 ⁵ Survivors Ade [†] Try [†]		
PC	Li	DMNA	150 µmoles/ml	2.44	124	74	50.82	23.77	
	Lu	DMMA	150 µmoles/ml	2.73	73	10	26.74	3.59	
	T	DMNA	150 µmoles/ml	2.72	85	9	31.40	3.42	
SC		DMNA	150 umples/ml	3.29	74	13	22.52	3.98	
	_	SALINE		2.65	99	10	37.22	3.76	

NOTE: PC

PC = positive control
SC = solvent and chemical controls

DMNA = dimethylnitrosamine

Li = liver = lung Lu = testes

a = number x 10⁵ b = number at 10⁻¹ dilution (c) = contamination present

Project No. 02468

ACTIVATION SUSPENSION TESTS WITH SACCHARCMYCES INDICATOR STRAIN D4

SPECIES: RAT DATE: 8-5-74

						Strai	n D4		n i veri di di superi di s
Test	0rgan	in Conf	round	Concentration	Total Population Screened	Conye	er of rtants ^b Try ⁺	Converta 10 ⁵ Sur Ade ⁺	ents Per rvivors Try
TC	Li	FDA	71-66	11	2.97 (11	2)120	9	40.40	3.03
		FOA	71-66		3.06 (11	5)108	13	35.29	4.25
	Lu	$\mathrm{Fig}\Lambda$	71-66	The second of th	3.53 (13	3)109	13	30.88	3.68
		FDA	71-66		3,41 (12	8) 90	14	26.39	4.11
	T	FDA	71-66		3.48 (73	1)101	16	29.02	3.33
		FDA	71-66		2.51 (94) 113	20	45.02	7.97

NOTE:

TC = test compound
H = high dose

l. = low dose

Li = liver

Lu = lung
T = testes
a = number x 10⁵
b = number at 10⁻¹ dilution
) = percent survival

ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4: POSTTIVE AND SOLVENT CONTROL RESULTS

SPEC	IES: M	ONKEY		DATE: 9-20-74					
	gyriden skim john gur maga van ngam ananga nada 80 km	rappinent i mila malaksi untukan paputahan daan ilapotaman -dubbi 19		an de facilità de la companya de la	Strai	n D4			
Test	Organ	Compound	Concentration	Total Population Screened ^a	Conve	er of rtantsb Try ⁺	Converta 10 ⁵ Sun Ade [†]		
PC.	Li	DMNA	150 μmoles/ml	5.67	73	68	12.87	11.99	
	Lu	DMNA	150 mmoles/ml	5.46	25	21	4.53	3.85	
	T	DENA	150 pmoles/ml	4.52	16	21(c)	3.54	4.65	
SC	_	DMNA	150 µmoles/ml	5.45	25	21	4.59	3.85	
		SALINE	nadakan di han dan magainin nagaran magainin di dan magainin da	5.46	9	15(c)	1.65	2.75	

NOTE: PC = positive control SC = solvent and chemical controls

DMNA = dimethylnitrosamine

Li = liver Lu = lung = testes

= number $\times 10^5$ = number at 10^{-1} dilution (c) = contamination present

Project No. <u>02468</u>

ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4

SPEC	IES: N	MONKEY	•		DATE:	9-20-7	74.	
		engge kentungan Minamatura depada sebiraha	upple unga sur a la a dilipatan an apparagen. Ini a rabbaratina i dilibabanda interna	ektodomininteriorista (organization territorista escribilista estados estados estados estados estados estados e	Strai	n D4		
Test	Organ	Compound	Concentration	Total Population Screened ^a	Conve	er of rtants b Try ⁺		tants Per urvivers Try [†]
TC	Li	FDA 7 -66	Н	5.85(107)	24	14	4.10	2.39
	gog gonolectus commen	FDA 765	L	3.76 (69)	18	22	4.79	5.85
	Lu	FDA 71-66	11	6.32(116)	20	26	3.16	4.11
	THE PERSON NAMED IN COLUMN 1	FDA 71-66	1.	4.14(76)	16	24(c)	3.86	5.80
	Ţ	FDA 71-66	11	7.89(145)	29	23	3.68	2.92
	and of the house, is a supposed or	FDA 71-66		4.68(86)	24	25(c)	5.13	5.34

NOTE:

TC = test compound

H = high dose

L = low dose

Li = liver

Lu = lung T = testes

a = number x 10⁵
b = number at 10⁻¹ dilution
(c) = contamination present
() = percent survival

Pienelies

XII. SUMMARY OF TEST RESULTS AND INTERPRETATION

Compound FDA 71-66, erythorbic acid, was evaluated for genetic activity in a series of in vitro microbial assays with and without metabolic activation. The following results were obtained.

A. Salmonella typhimurium

1. Plate tests

At a concentration of 0.5% (w/v), this chemical did not exhibit any mutagenic activity in activation or non-activation plate tests.

2. Non-activation suspension tests

At test concentrations of 0.50% and 0.25% (w/v), this compound produced an apparent mutagenic response at the lower dose against strain TA-1538. This was assumed to be an aberrant result because no increase was obtained at the higher dose level. A repeat test of FDA 71-66 at 0.25% indicated no mutagenic activity. The fact that contamination was present on the population plates suggests that some of the colonies originally counted on the selective medium may not have been S. typhimurium.

3. Activation suspension tests

At doses equivalent to those employed in the non-activation tests, this chemical did not exhibit any mutagenic activity when tested in the presence of organ homogenates from livers, lungs and testes of mice, rats or rhesus monkeys. Certain dose levels in mouse activation tests with TA-1538 were high but repeat tests indicated that the results were probably random fluctuations and not true mutagenic responses. A similar increase at the high dose with rat liver and strain TA-1538 also proved to be negative on repeat. All tests with monkey activation tissues were clearly negative.

B. <u>Saccharomyces cerevisiae</u>

1. Non-activation suspension tests

At dose levels of 4.0% and 2.0% (w/v) this chemical did not exhibit any genetic activity in tests with strain D4.

2. Activation suspension tests

At dose levels equivalent to those employed in the non-activation tests, this compound did not exhibit any genetic activity in activation tests with strain D4.

C. Additional Comments

It can be seen that the spontaneous reversion frequencies for the indicator strains are quite variable. This was expected and has been reported in the literature for both the <u>Salmonella</u> and yeast strains. Although cultures with quite low spontaneous frequencies can be selected, we feel that ranges of $1-5 \times 10^{-8}$ for TA-1535 and 5-10 x 10^8 for TA-1537 and TA-1538 are the mode.

The survival ranges, although not recorded, are also quite variable ranging from over 100% to less than 50% of the control values. It is our feeling that survival values are dependent on many factors and not only the toxicity of the test compound as determined in the initial survival curves.

Submitted by:

David Brusick, Ph.D.

Director, Department of Genetics

APPENDIX

SUMMARY OF TESTS EVALUATING DMSO FOR GENETIC ACTIVITY IN SALMONELLA AND SACCHAROMYCES

COMPOUND <u>DIMETHYSULFOXIDE</u>

A. <u>Suspension Tests</u>

-	Activat	tion	Salmonell Frequenci	Salmonella Reversion Frequencies (x 10 ⁻⁸)		es D4 Conversion es (x 10 ⁻⁵)
Test	Species ^a	Organb	TA-1535	TA-1538	Ade ⁺	Try ⁺
Non-activation						
Control (-C) High Dose ^C Low Dose ^d	- - -	- - -	0.74 1.91 0.53	0.88 1.05 1.37	32.51 28.32 40.73	4.34 2.95 0.49
<u>Activation</u>						
Control (+C) Control (-C)	- -	-	1.80 1.43	0.36 1.04	38.27 37.12	2.47 2.64
High Dose ^C	М М М		0.34 0.59 . 0.62	1.07 0.58 0.30	47.77 36.29 34.35	2.75 1.39 1.94
Lose Dose ^d	M M M	Li Lu T	- 0.43 0.11	0.87 3.14 0.39	34.02 42.30 45.95	1.18 1.40 2.32

Note: (-C) = solvent	control a	and (+C) =	test chemical	control	without	homogenate	
a M = mouse Mo = monkey R = rat	b Li	i = liver u = lung = testes	С	Bacteria	= 3%	d Ba	cteria = 1.5% ast = 2.5%

COMPOUND DIMETHYSULFOXIDE

B. <u>Plate Tests</u>

	Activa	tion	<u>Sa1</u>	Salmonella Responses			
Test	Speciesa	Organ ^b	TA-1535	TA-1537	TA-1538		
Non-activation							
Control (-C) Test compound (3%)	, ·	-	-	-	<u>.</u>		
<u>Activation</u>							
Control (+C) Control (-C)	-	- - ::	- .	- 	<u>-</u>		
Test compound (3%)	M M M	Li Lu T	- - -	. <u>-</u> - -	-		
	R R R	· Li · Lu T	- -	- -	- - -		
+ 3 •	Mo Mo Mo	Li Lu T	- - -	- - -	- - -		
lote: (-C) = solvent con	ntrol and (+	C) = chemical contr	ol without homog	genate			
a M = mouse Mo = monkey R = rat		b Li = live Lu = lung T = test					